
Efficiently Backing up Terabytes of Data
with pgBackRest

David Steele
Crunchy Data

PGDay Russia 2017
July 6, 2017

Agenda

1 Why Backup?

2 Living Backups

3 Design

4 Features

5 Performance

6 Changes to Core

7 In The Pipeline

8 Questions?

2 / 25

Why Backup?

Hardware Failure:

No amount of redundancy can prevent it.

Replication:

WAL archive for when async streaming gets behind.
Sync replica from backup instead of master.

Corruption:

Can be caused by hardware or software.
Detection is, of course, a challenge.

3 / 25

Why Backup?

Accidents:

So you dropped a table?
Deleted your most important account?

Development:

No more realistic data than production!
May not be practical due to size / privacy issues.

Reporting:

Use backups to standup an independent reporting server.
Recover important data that was removed on purpose.

4 / 25

Schrödingers Backup

The state of any backup is unknown until a restore is attempted.

5 / 25

Making Backups Useful

Find a way to use your backups

Syncing / New Replicas
Offline reporting
Offline data archiving
Development

Unused code paths will not work when you need them unless they are tested

Regularly scheduled automated failover using backups to restore the old primary
Regularly scheduled disaster recovery (during a maintenance window if possible) to
test restore techniques

6 / 25

pgBackRest Design

Rsync powers many database backup solutions but it has some serious limitations:

Single-process.
One second timestamp resolution.
Incremental backups require previous backup to be uncompressed.

pgBackRest does not use rsync, tar or other typical backup tools:

Protocol supports local/remote operation.
Solves timestamp resolution issue.

7 / 25

Multi-Process Backup & Restore

Compression is the usual bottleneck:

But most PostgreSQL backup solutions are single-process.
pgBackRest solves the problem with multi-processing.
1TB/hr raw throughput even on a 1Gb/s link using multiple cores.

8 / 25

Local or Remote Operation

Custom protocol allows backup, restore, and archive locally or remotely via SSH with minimal
configuration.

No direct access to PostgreSQL is required from the remote server which enhances security.

9 / 25

Full, Incremental, & Differential Backups

Multiple backup types:

Full
Differential
Incremental

pgBackRest is not susceptible to the time resolution issues of rsync, making differential and
incremental backups safe.

10 / 25

Backup Rotation & Archive Expiration

Retention based on full or differential backups.

WAL retention for all backups or configure number of recent backups.

WAL required for consistency of backups always preserved.

11 / 25

Backup Integrity

PostgreSQL page checksums are validated if present (> 9.3).

Checksums are calculated for every file in the backup and rechecked during a restore.

After a backup required WAL segments are checked in the repository.

Simple backup format:

Backup directories have the same format as a PostgreSQL cluster.
Clusters can be brought up in place with snapshots if compression is disabled.
Advantageous for terabyte-scale databases.

All operations utilize file and directory level fsync to ensure durability.

12 / 25

Backup Resume

An aborted backup can be resumed from the point where it stopped.

Checksumming files on resume takes place on the backup server.

Saves load on the master by not compressing and transmitting resumed files.

13 / 25

Streaming Compression & Checksums

Compression and checksum calculations are performed in stream.

Compression is not done more than once.

Lower compression is used when the destination is uncompressed to efficiently utilize CPU and
network bandwidth.

14 / 25

Delta Restore

Backup manifest contains checksum and size for every file.

On delta restore all files not present in the backup or with a different size are removed from
PGDATA.

The remaining files are checksummed and only files with a checksum mismatch are restored.

Multi-processing can lead to dramatic reductions in restore time and network utilization.

15 / 25

Advanced Parallel Archiving

Dedicated commands are included for both pushing WAL to the archive and retrieving WAL
from the archive.

Push command automatically detects WAL segments that are pushed multiple times and
de-duplicates when the segment is identical, otherwise an error is raised.

Push and get commands both ensure that the database and repository match by comparing
PostgreSQL versions and system identifiers to prevent misconfiguration.

Asynchronous parallel archiving allows compression and transfer to be offloaded to another
process which maintains continuous connections to the remote server, improving throughput
significantly.

Critical feature for databases with extremely high write volume.

16 / 25

Tablespace & Link Support

Tablespaces are fully supported and on restore tablespaces can be remapped to any location.

Remap all tablespaces to one location with a single command which is useful for development
restores.

File and directory links are supported for any file or directory in the PostgreSQL cluster.

Restore all links to their original locations, remap some or all links, or restore some or all links as
normal files or directories within the cluster directory

17 / 25

Selective Restore

Restore only specified databases out of a cluster backup.

Other files are restored as sparse, zeroed files the save space.

All WAL must be replayed.

Cannot connect to non-restored databases, can only drop them.

18 / 25

Backup from Standby

Backup is started on master.

Backup starts when replay location on standby reaches start backup location.

Reduces load on master because replicated files are copied from the standby.

19 / 25

S3 Support

Repositories stored in S3.

All pgBackRest features supported.

Efficient implementation.

20 / 25

Compatibility with PostgreSQL > 8.3

Support for versions down to 8.3, since older versions of PostgreSQL are still regularly utilized.

21 / 25

Performance

Parameters pgBackRest rsync

processes: 1
network compression: l3
destination compression: none

141 Seconds
124 Seconds
(.13X Faster)

processes: 2
network compression: l3
destination compression: none

84 Seconds
(1.48X Faster)

N/A

processes: 1
network compression: l6
destination compression: l6

334 Seconds
(1.52X Faster)

510 Seconds

processes: 2
network compression: l6
destination compression: l6

174 Seconds
(2.93X Faster)

N/A

22 / 25

Changes to Core

Completed

Exclude files/directories reset or rebuilt on recovery.
Make pg stop backup() wait optional.
Non-exclusive backups (Magnus Hagander).
Archive timeout fix (Michael Paquier).

Planned

More exclusions.
Allow group read on $PGDATA.
Pass multiple WAL segments to archive command.
Configurable WAL segment size (Beena Emerson).

23 / 25

In The Pipeline

PostgreSQL 10 support.

Encryption.

Zstandard compression.

Parallel archive-get.

24 / 25

Questions?

website: http://www.pgbackrest.org

email: david@pgbackrest.org
email: david@crunchydata.com

releases: https://github.com/pgbackrest/pgbackrest/releases

slides & demo: https://github.com/dwsteele/conference/releases

25 / 25

http://www.pgbackrest.org
mailto:david@pgbackrest.org
mailto:david@crunchydata.com
https://github.com/pgbackrest/pgbackrest/releases
https://github.com/dwsteele/conference/releases

	Why Backup?
	Living Backups
	Design
	Features
	Performance
	Changes to Core
	In The Pipeline
	Questions?

