Efficiently Backing up Terabytes of Data
with pgBackRest

David Steele
Crunchy Data

PGDay Russia 2017
July 6, 2017

£2"CRUNCHY

Enterprlse PostgreSQL

O

Agenda

© Wwhy Backup?
9 Living Backups
e Design

e Features

e Performance
e Changes to Core
e In The Pipeline

e Questions?

2/25

ZZCRUNCHY

Enterprise PostgresQL

Why Backup?

@ Hardware Failure:
e No amount of redundancy can prevent it.
@ Replication:

e WAL archive for when async streaming gets behind.
e Sync replica from backup instead of master.

@ Corruption:

e Can be caused by hardware or software.
e Detection is, of course, a challenge.

% CRUNCHY

3/25 Enterprise PostgresQL

Why Backup?

@ Accidents:

e So you dropped a table?
e Deleted your most important account?

@ Development:

e No more realistic data than production!
e May not be practical due to size / privacy issues.

@ Reporting:

e Use backups to standup an independent reporting server.
e Recover important data that was removed on purpose.

% CRUNCHY

4/25 Enterprise PostgresQL

Schrodingers Backup

The state of any backup is unknown until a restore is attempted.

% CRUNCHY

5/25 Enterprise PostgresQL

Making Backups Useful

@ Find a way to use your backups

e Syncing / New Replicas
o Offline reporting

o Offline data archiving

e Development

@ Unused code paths will not work when you need them unless they are tested
o Regularly scheduled automated failover using backups to restore the old primary

o Regularly scheduled disaster recovery (during a maintenance window if possible) to
test restore techniques

®
6/25 >CRUNCHY

Enterprise PostgresQL

pgBackRest Design

@ Rsync powers many database backup solutions but it has some serious limitations:

e Single-process.
o One second timestamp resolution.
e Incremental backups require previous backup to be uncompressed.

@ pgBackRest does not use rsync, tar or other typical backup tools:

e Protocol supports local /remote operation.
e Solves timestamp resolution issue.

% CRUNCHY

7/25 Enterprise PostgresQL

Multi-Process Backup & Restore

@ Compression is the usual bottleneck:

e But most PostgreSQL backup solutions are single-process.
o pgBackRest solves the problem with multi-processing.
e 1TB/hr raw throughput even on a 1Gb/s link using multiple cores.

‘i,n RUNCHY

terprise PostgresQL

8/25

Local or Remote Operation

@ Custom protocol allows backup, restore, and archive locally or remotely via SSH with minimal
configuration.

@ No direct access to PostgreSQL is required from the remote server which enhances security.

% CRUNCHY

9/25 Enterprise PostgresQL

Full, Incremental, & Differential Backups

@ Multiple backup types:

o Full
o Differential
o Incremental

@ pgBackRest is not susceptible to the time resolution issues of rsync, making differential and
incremental backups safe.

% CRUNCHY

10/25 Enterprise PostgresQL

Backup Rotation & Archive Expiration

@ Retention based on full or differential backups.
@ WAL retention for all backups or configure number of recent backups.

@ WAL required for consistency of backups always preserved.

% CRUNCHY

11/25 Enterprise PostgresQL

Backup Integrity

PostgreSQL page checksums are validated if present (> 9.3).
Checksums are calculated for every file in the backup and rechecked during a restore.
After a backup required WAL segments are checked in the repository.
Simple backup format:
e Backup directories have the same format as a PostgreSQL cluster.

o Clusters can be brought up in place with snapshots if compression is disabled.
e Advantageous for terabyte-scale databases.

All operations utilize file and directory level fsync to ensure durability.

% CRUNCHY

12/25 Enterprise PostgresQL

Backup Resume

@ An aborted backup can be resumed from the point where it stopped.
@ Checksumming files on resume takes place on the backup server.

@ Saves load on the master by not compressing and transmitting resumed files.

% CRUNCHY

13/25 Enterprise PostgresQL

Streaming Compression & Checksums

@ Compression and checksum calculations are performed in stream.
@ Compression is not done more than once.

@ Lower compression is used when the destination is uncompressed to efficiently utilize CPU and
network bandwidth.

% CRUNCHY

14 /25 Enterprise PostgresQL

Delta Restore

@ Backup manifest contains checksum and size for every file.

@ On delta restore all files not present in the backup or with a different size are removed from
PGDATA.
@ The remaining files are checksummed and only files with a checksum mismatch are restored.

@ Multi-processing can lead to dramatic reductions in restore time and network utilization.

% CRUNCHY

15/25 Enterprise PostgresQL

Advanced Parallel Archiving

@ Dedicated commands are included for both pushing WAL to the archive and retrieving WAL
from the archive.

@ Push command automatically detects WAL segments that are pushed multiple times and
de-duplicates when the segment is identical, otherwise an error is raised.

@ Push and get commands both ensure that the database and repository match by comparing
PostgreSQL versions and system identifiers to prevent misconfiguration.

@ Asynchronous parallel archiving allows compression and transfer to be offloaded to another
process which maintains continuous connections to the remote server, improving throughput
significantly.

o Critical feature for databases with extremely high write volume.

% CRUNCHY

16 /25 Enterprise PostgresQL

Tablespace & Link Support

@ Tablespaces are fully supported and on restore tablespaces can be remapped to any location.

@ Remap all tablespaces to one location with a single command which is useful for development
restores.

@ File and directory links are supported for any file or directory in the PostgreSQL cluster.

@ Restore all links to their original locations, remap some or all links, or restore some or all links as
normal files or directories within the cluster directory

®
17,25 >CRUNCHY

Enterprise PostgresQL

Selective Restore

@ Restore only specified databases out of a cluster backup.
@ Other files are restored as sparse, zeroed files the save space.

@ All WAL must be replayed.

@ Cannot connect to non-restored databases, can only drop them.

18/25

% CRUNCHY

Enterprise PostgresQL

Backup from Standby

@ Backup is started on master.
@ Backup starts when replay location on standby reaches start backup location.

@ Reduces load on master because replicated files are copied from the standby.

% CRUNCHY

19/25 Enterprise PostgresQL

S3 Support

@ Repositories stored in S3.
@ All pgBackRest features supported.

@ Efficient implementation.

20/25

% CRUNCHY

Enterprise PostgresQL

Compatibility with PostgreSQL > 8.3

@ Support for versions down to 8.3, since older versions of PostgreSQL are still regularly utilized.

% CRUNCHY

21/25 Enterprise PostgresQL

Performance

Parameters

pgBackRest

rsync

processes: 1
network compression: 13
destination compression:

none

141 Seconds

124 Seconds
(.13X Faster)

processes: 2
network compression: 13

destination compression:

none

84 Seconds
(1.48X Faster)

N/A

processes: 1
network compression: 16

destination compression:

334 Seconds
(1.52X Faster)

510 Seconds

processes: 2
network compression: 16

destination compression:

16

22/25

174 Seconds
(2.93X Faster)

N/A

% CRUNCHY

Enterprise PostgresQL

Changes to Core

@ Completed

Exclude files/directories reset or rebuilt on recovery.
Make pg-stop_backup() wait optional.
Non-exclusive backups (Magnus Hagander).
Archive timeout fix (Michael Paquier).

@ Planned

More exclusions.

Allow group read on $PGDATA.

Pass multiple WAL segments to archive_command.
Configurable WAL segment size (Beena Emerson).

2; RUNCHY

terprise PostgresQL

23/25

In The Pipeline

PostgreSQL 10 support.

°

@ Encryption.
@ Zstandard compression.
°

Parallel archive-get.

24 /25

% CRUNCHY

Enterprise PostgresQL

Questions?

website: http://www.pgbackrest.org

email: david@pgbackrest.org
email: david@crunchydata.com

releases: https://github.com/pgbackrest/pgbackrest/releases

slides & demo: https://github.com/dwsteele/conference/releases

% CRUNCHY

25/25 Enterprise PostgresQL

http://www.pgbackrest.org
mailto:david@pgbackrest.org
mailto:david@crunchydata.com
https://github.com/pgbackrest/pgbackrest/releases
https://github.com/dwsteele/conference/releases

	Why Backup?
	Living Backups
	Design
	Features
	Performance
	Changes to Core
	In The Pipeline
	Questions?

